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This introductory article to the special edition on glutamate neurotransmission in neuropsychiatric disorders
provides an overview of glutamate neurotransmitter system physiology and pharmacology. Glutamate was
only relatively recently recognized as the major excitatory neurotransmitter in the mammalian brain, in part
due to its ubiquitous nature and diverse metabolic roles within the CNS. The extremely high concentration of
glutamate in brain tissue paired with its excitotoxic potential requires tight physiological regulation of
extracellular glutamate levels and receptor signaling in order to assure optimal excitatory neurotransmission
but limits excitotoxic damage. In order to achieve this high level of control, the system has developed a complex
physiology with multiple regulatory processes modulating glutamate metabolism, release, receptor signaling,
and uptake. The basic physiology of the various regulatory components of the system including the rich receptor
pharmacology is briefly reviewed. Potential contributions from each of the system's components to the
pathophysiology of neuropsychiatric illnesses are briefly discussed, as are themanynewpharmacological targets
for drug development providedby the system, especially as they pertain to the proceedingpreclinical and clinical
articles in this issue.
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1. Introduction

The monoaminergic hypothesis of psychiatric disorders arose in
the wake of the serendipitous discovery that tricyclic antidepressants
and monoamine oxidase inhibitors had beneficial effects on mood,
anxiety and psychosis via monoamine neurotransmitter (dopamine,
serotonin and norepinephrine) reuptake, degradation and receptor
dynamics. Monoaminergic research progressed apace, resulting in
many important preclinical and clinical discoveries, enhancing our
understanding of the pathophysiological mechanisms underlying
many neuropsychiatric disorders and improving our ability to treat
these devastating illnesses. However, several recent large clinical
studies have made us increasingly aware of the limitations of our
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current armamentarium of psychotropic medications [STAR*D (Gaynes
et al., 2009; Rush et al., 2006), STEP-BD (Perlis et al., 2006; Sachs et al.,
2003), CATIE (Lieberman et al., 2005; Swartz et al., 2008)].

Presently, mounting evidence suggesting that the glutamatergic sys-
temalso contributes to the pathophysiology of neuropsychiatric disorders
is opening opportunities for the development of new models of patho-
genesis, improved diagnostic tools and novel treatment strategies. A
more complete understanding of glutamates' roles in the pathogenesis
and pathophysiology of neuropsychiatric disorders may allow for an
increasingly rational approach to drug development for these common,
disabling illnesses. The following reviewwill briefly outline the extremely
complex physiology and pharmacology of the glutamatergic neurotrans-
mitter system, highlighting specific areas of interest to clinical neurosci-
ence and drug discovery.

2. Glutamate metabolism

Although glutamate was known to have central nervous system
(CNS) effects for more than 75 years, it was not until 1984 that it
was truly acknowledged as fulfilling the criteria of a neurotransmitter
(Fonnum, 1984). Glutamate was originally speculated to serve a
metabolic function in the CNS (Krebs, 1935), as it was found within
numerous intracellular compartments including the cytosol and
mitochondria of all CNS cell types. However, it is now known that
despite its ubiquitous nature, levels of extracellular glutamate are
indeed tightly regulated, thus allowing glutamate to function as the
major excitatory neurotransmitter in the mammalian CNS. The tight
control of glutamatergic neurotransmission is an energy-costly
process, requiring multiple regulatory processes and high levels of
glucose and oxygen consumption.

Like all amino acids, glutamate has a C-terminus and anN-terminus;
the C-terminus and carbon backbone derived from glucose. Glucose
crosses the blood–brain barrier via astrocytic end feet and, once
intracellular, is broken down via glycolysis to pyruvic acid in the cytosol.
Pyruvic acid enters the tricarboxylic acid (TCA) cycle, which generates
α-ketoglutarate and is later transaminated to receive an amino group
from a branched chain amino acid donor, e.g. leucine, isoleucine and
valine, and various amino group donors, e.g. aspartate, γ-aminobutyric
acid (GABA) and alanine (Pellerin andMagistretti, 2004). It is important
to note that in addition to its role as a neurotransmitter, glutamate also
serves as a metabolic precursor to GABA and as a component of various
amino acid-based derivatives, e.g. the antioxidant glutathione. Consis-
tent with glutamate's key role in multiple aspects of brain physiology,
metabolic studies have determined that virtually all of the glucose
that enters the CNS is eventually converted to glutamate (Shen et al.,
1999).

3. Glutamate release

Cytosolic glutamate crosses the vesicular membrane via the activity
of vesicular glutamate transporters (VGLUTs) (Takamori, 2006).
VGLUTs are multimeric proton/glutamate antiporters. To date, three
VGLUTs have been cloned. VGLUT1 and 2 are primarily expressed in
glutamatergic neurons; whereas, VGLUT3 is somewhat unique in that
it has been detected in GABAergic, cholinergic and monoaminergic
neurons, although the function of VGLUT3 in these non-glutamatergic
neuronal populations is unclear (Fremeau et al., 2004b). Interestingly,
VGLUT1 and 2 are also expressed in glial cells and may play a role in
the recently-identified release of glutamate fromdepolarized astrocytes
(Bezzi et al., 2004; Montana et al., 2004). The loss of VGLUT expression
via targeted knockout strategies results in the loss of glutamate packag-
ing into synaptic vesicles and deleterious neuropsychiatric sequelae
(Fremeau et al., 2004a; Gras et al., 2008; Moechars et al., 2006; Seal et
al., 2008; Wallen-Mackenzie et al., 2006; Wallen-Mackenzie et al.,
2010; Wojcik et al., 2004). In a Ca2+ and soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE)-dependent
manner (Pang and Sudhof, 2010; Sudhof and Rothman, 2009), gluta-
mate is released into the synaptic cleft to bind to and elicit its effects
on postsynaptic receptors. Recent studies demonstrating that the pack-
aging and release of vesicular glutamate are modulated by stress and
psychotropic drugs (Musazzi et al., 2010), lead to speculation that this
could be a critical site in relation to stress-related pathophysiology
and possibly a target for drug development.

4. Glutamate clearance and cycling

Dysregulated excitatory neurotransmission, resulting in high
concentrations of extracellular glutamate, and especially increased
levels of extrasynaptic glutamate, leads to cellular damage (hence,
the term “excitotoxicity”) (Hardingham et al., 2002; Ivanov et al.,
2006; Leveille et al., 2008; Vanhoutte and Bading, 2003; Xu et al.,
2009). Therefore, the rapid removal of extracellular glutamate must
occur on a millisecond time scale to avoid cellular damage. Glutamate
is actively removed from the synaptic cleft and transported into the
cytosol against its concentration gradient via excitatory amino acid
transporters (EAATs), primarily found on synaptically-associated
astrocytic processes. Five such high-affinity transporters have been
identified to date (O'Shea, 2002). EAAT1 is abundantly detected in
the neocortex and cerebellum but appears to be restricted to
astrocytes. EAAT2, the chief glutamate transporter in the forebrain,
is expressed mostly in astrocytes but also, to a limited extent, in
neurons. EAAT3 is neuron-specific and enriched in GABAergic presyn-
aptic nerve endings. EAAT4 has only been detected in the dendrites of
cerebellar Purkinje neurons. Finally, EAAT5 is retina-specific. In
rodents, the homologues of EAAT1-3 are referred to as GLAST, GLT
and EAAC1, respectively. The location of the EAATs relative to the
geometry of synapse places them in a critical position to prevent
glutamate spillover and activation of extrasynaptic glutamate
transporters (Zheng et al., 2008). Considering individual astrocytes
serve large numbers of synapses with minimal overlap in the
synapses served by neighboring astrocytes, the failure of a single as-
trocyte could impair glutamate removal at thousands of synapses in
some brain regions (Bushong et al., 2002). Interestingly,
dysfunction of EAATs has specifically been implicated in the patholo-
gy of several neurodegenerative disorders (Beart and O'Shea, 2007),
and has recently been related to learned helplessness behavior in
rodent models (Zink et al., 2010). Other studies have identified
reduced levels of EAATs in the brains of patients with mood and psy-
chotic spectrum disorders (Bernard et al., 2011; Choudary et al., 2005;
McCullumsmith and Meador-Woodruff, 2002; Sequeira et al., 2009).

Once in the cytosol, glutamine synthetase, an astrocyte and
oligodendrocyte-specific enzyme, converts glutamate into glutamine in
an ATP-requiring reaction with ammonia. Both astrocytes and neurons
contain glutamine transporters that, under appropriate electrophysiolog-
ical conditions, lead to the net exchange of glutamine from astrocytes-to-
neurons. In neurons, the mitochondrial phosphate-specific enzyme, glu-
taminase, reconverts inert glutamine-to-glutamate for subsequent
repackaging into synaptic vesicles. The cycling of glutamate/glutamine
in astrocytes and neurons has been termed “the glutamine cycle” (see
figure for schematic). Thus, there are two pathways for the production
of neuronal glutamate: (1) the de novo production of glutamate from
glucose and amino acid derivatives via energy metabolism and (2) the
recycling of glutamate from glutamine via glutamate reuptake, enzymatic
activity of glutaminase and the activities of the glutamine transporters
(Erecinska and Silver, 1990). Recent work has demonstrated a decreased
rate of glutamate/glutamine cycling following chronic unpredictable
stress exposure in rodents (Banasr et al., 2010), and suggests that
glutamate clearance and cycling could be targets for future psychotropic
drug development (Banasr et al., 2010; Mineur et al., 2007; Sattler and
Rothstein, 2007).

In addition to stimulated vesicular release of glutamate, some level
of extracellular glutamate is maintained by a cystine-glutamate
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antiporter called system x-C. This antiporter exchanges extracellular
cystine for intracellular glutamate in a 1:1 ratio. System x-C is highly
expressed in the rodent and human brain, and most CNS cell types
(neurons, astrocytes, microglia, vascular endothelial cells, ependymal
cells of the choroid plexus and leptomeninges) express detectable
levels of this antiporter. System x-C consists of a specific light chain,
xCT, and a heavy chain, 4F2, linked by a disulfide bridge (Albrecht et
al., 2010), and its activity is inhibited in the context of numerous neuro-
psychiatric insults including in vitro oxygen deprivation and in vivo
chronic cocaine exposure (Baker et al., 2003; Fogal et al., 2007;Madayag
et al., 2007). Interestingly, the activity of system x-C has been restored
by numerous agents, e.g. interleukin 1-β (Jackman et al., 2010), N-
acetylcysteine (Moussawi et al., 2009) and ceftriaxone (Knackstedt et
al., 2010). In addition to its role in regulating levels of extracellular glu-
tamate, system x-C is also the rate-limiting step in the formation of the
potent antioxidant, glutathione (McBean, 2002) (Fig. 1).

5. Glutamatergic neurotransmission

As described, glutamatergic synapses serve as excitatory relay sta-
tions between presynaptic nerve terminals and postsynaptic dendritic
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Fig. 1. Glutamatergic neurotransmission: due to the risk of excitotoxic damage in the wake
be maintained in the mammalian CNS. Glutamine (Gln) is converted to glutamate (Glu) by
Glu is packaged into presynaptic vesicles by vesicular Glu transporter (VGLUT) proteins an
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able via electron microscopy due to the thickened appearance of the
postsynaptic membrane. These postsynaptic “densities” (PSDs) are
~50 nm thick conglomerations of membrane receptors, scaffolding
proteins and second messenger effectors; some estimates suggest that
each PSD may contain up to 100 proteins. Glutamate receptors may be
divided into two broad categorizations: ionotropic and metabotropic
receptors (see Fig. 2). Ionotropic glutamate receptors are ion channels
thatflux cations (Ca2+, Na+). Conformational changes “open” the chan-
nel in response to agonist binding. Metabotropic receptors, on the other
hand, activate or inhibit second messenger systems via interactions
with cognate G-proteins.
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Three classes of ionotropic glutamate receptors have been identified,
which were named on the basis of agonist selectivity: N-methyl-D-
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Fig. 2. Glutamate receptor subtypes.
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intriguing features of ionotropic glutamate receptors is their diversity of
channel properties based on subunit composition and expression profile
in the mammalian brain.

5.1.1. NMDA receptors
NMDA receptors have the highest affinity for glutamate (EC50 1 μM).

Three families of NMDA receptor subunits have been identified: (1)
NR1, (2) NR2A-D and (3) NR3A-B. Via in situ hybridization studies, NR1
expression appears to be ubiquitous and obligatory in the brain; it is
critical for neurodevelopment, as NR1 knockout mice die shortly after
birth due to respiratory demise. Interestingly, hippocampal CA1-specific
NR1-knockout mice display grossly normal development but impaired
long-termpotentiation (LTP), themolecular and electrophysiological cor-
relate of learning and memory in CA1 hippocampal pyramidal neurons
and impaired spatial memory in the Morris water maze (Tsien et al.,
1996). NR2 mRNA displays differential expression and appears to be
developmentally-regulated (Monyer et al., 1994). NR2A expression pre-
dominates in the neocortex and hippocampus while NR2B is primarily
expressed in the forebrain. In contrast, NR2C and NR2D are intensely
expressed in the cerebellum and diencephalon/lower brain stem
(Nakanishi, 1992). NR3A is predominantly expressed in the neocortex
and displays neurodevelopmental regulation; dysregulated NR3A devel-
opment has been proposed to contribute to the pathogenesis of schizo-
phrenia (Das et al., 1998; Henson et al., 2008). Finally, NR3B mRNA
expression is evident in the brainstem and alphamotor neurons of spinal
cord (Chatterton et al., 2002; Matsuda et al., 2003; Matsuda et al., 2002;
Nishi et al., 2001). More recently, NR3B has been detected in the cerebel-
lum and hippocampus (Andersson et al., 2001; Bendel et al., 2005).

NMDA receptors are among the most tightly regulated in the
mammalian brain and unique in requiring co-agonists for activation. At
least six binding sites have been identified that regulate the
probability of ion channel opening, viz., sites for two obligatory co-
ligands (glutamate and glycine), polyamines and cations (Mg2+, Zn2+

and H+). NMDA receptor ligands are short-chain dicarboxlic amino
acids (NMDA, glutamate, aspartate, etc.). Glutamate, the most potent
neurochemical agonist identified in the CNS, and several competitive
antagonists of the NMDA receptor including D-2-amino-5-phosphono-
pentanoic acid (D-AP5) and 3-(2-carboxypiperazin-4-yl)1-propeny-1-
phosphonic acid (2R-CPPene) bind to the NR2 subunit of the tetrameric
receptor complex. In contrast, glycine binds to a site on the NR1 subunit
(Dingledine et al., 1999; Kleckner and Dingledine, 1988). The glycine-
binding site on the NR1 subunit has gained clinical significance due to
D-cycloserine's binding at the same glycineB site. D-cycloserine is a par-
tial agonist that has beenproposed as a novel neuromodulatory agent to
enhance the efficacy of evidence-based psychotherapies like exposure
and response prevention in anxiety disorders (Danysz and Parsons,
1998; Krystal et al., 2009; Sheinin et al., 2001). Glycine transport re-
quires the activity of specific glycine transporters (GlyT). Two such
transporters have been identified to date, GlyT1 andGlyT2. Recent stud-
ies suggest GlyT inhibitorsmayprovide an efficacious augmenting strat-
egy in treatment-refractory schizophrenia (Lane et al., 2006; Lane et al.,
2010).

Extracellular Mg2+ acts as an open-channel, voltage-dependent
“pore blocker” to preclude cation flux (Nowak et al., 1984). Interestingly,
Zn2+, while also a divalent cation, does not block the pore of the NMDA
receptor. Instead, Zn2+ is an important allosteric modulator of some glu-
tamate receptors and colocalizes to synaptic vesicles and is co-released
with glutamate in select populations of synaptic vesicles, which possibly
provides an additionalmechanism to regulate glutamate receptor activa-
tion. Several additional NMDA receptor antagonists also exert their influ-
ence in an analogous voltage-dependent manner, e.g. phencyclidine
(PCP), ketamine and MK-801. These noncompetitive antagonists have
recently garnered significant attention both for their psychotomimetic
(Balla et al., 2001; Javitt, 2007; Javitt et al., 2004; Krystal et al., 1994;
Moghaddam and Adams, 1998; Patil et al., 2007; Umbricht et al., 2000)
and rapidly-acting antidepressant-like properties (aan het Rot et al.,
2010; Berman et al., 2000; Diazgranados et al., 2010; Mathew et al.,
2009; Price et al., 2009; Valentine et al., 2011; Zarate et al., 2006).

Hydrogen ions (H+) are also critical endogenous allosteric modula-
tors of glutamate receptors. At physiological pH, the presence of H+

decreases the frequency of channel opening due to H+ binding to
NR2B. The polyamine regulatory sites of ionotropic glutamate receptors
also play an important pH-dependent modulatory role. The binding of
polyamines (spermine, spermidine) relieves the H+-mediated block
and increases cation flux; however, the effect of polyamines reverses
at higher concentrations (Traynelis et al., 1995). These pH-dependent
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effects may modulate NMDA receptor functioning in the context of
increased metabolic demands and neurophysiological insults, e.g.
excessive stimulation/activity, hypoxia and acidosis. Additionally, Ca2+

dependent calmodulin inactivation of NR1 subunits has also been pro-
posed as a negative feedback mechanism leading to decreased channel
open time/probability (Ehlers et al., 1996). Moreover, the Ca2+-
calmodulin dependent phosphatase calcineurin inhibits the activity
of ionotropic glutamate receptors via receptor dephosphorylation fol-
lowing the Ca2+-dependent activation of calmodulin (Tong et al., 1995).

Finally, glutamatergic neurotoxicity is increasingly thought to be
mediated by the differential activation of extrasynaptic relative to
synaptic NMDA receptors (Hardingham and Bading, 2010; Hardingham
et al., 2002; Ivanov et al., 2006; Leveille et al., 2008;Vanhoutte andBading,
2003; Xu et al., 2009). A recent series of studies suggests that excessive ac-
tivation of extrasynaptic pathways specifically induces apopotic signal
transduction cascades promoting neuronal cell death, while activation
of synaptic NMDA receptors creates a “neuroprotective shield” via
Ca2+-mediated signal transduction pathways promoting neuronal
survival. The opposing neuroprotective and neurotoxic effects induced
by activation of the synaptic and extrasynaptic NMDA receptors, respec-
tively, aremediated by complex regulatory actions on several protective
(anti-apoptotic, pro-survival and antioxidant) and pro-apoptotic genes
(Hardingham et al., 2001a, 2001b; Papadia et al., 2008; Wu et al.,
2001). Interestingly, memantine, a noncompetitive NMDA receptor an-
tagonist, displays differential effects on synaptic and extrasynaptic
NMDA receptors (Chen and Lipton, 2006). At low doses, memantine
does not accumulate in the synaptic cleft to antagonize synaptic NMDA
receptors; instead, it antagonizes extrasynaptic NMDA receptors which
spare their exposure to high levels of extracellular glutamate in patho-
logical states like ischemia and other neuropsychiatric processes (Chen
et al., 1998; Xia et al., 2010).

5.1.2. AMPA/kainate receptors
AMPA receptors are also widely expressed in the mammalian CNS

andmediate fast excitatory neurotransmission in response to glutamate
binding (Palmer et al., 2005). AMPA receptor subunits are called GluR1-
4; kainate receptor subunits are GluR5-7 and KA1-2. GluRs, in contrast
to other amino acid and monoaminergic neurotransmitter receptors,
contain an unusually large extracellular N-terminus. Upon forming a
tetrameric complex of GluR1-4s, AMPA receptors mediate fast excitato-
ry neurotransmission that can be blocked by specific quinoxalinediones
including 6-nitro-7-sulphamobezo(f)quinoxaline-2,3-dione (NBQX), a
potent and selective AMPA receptor antagonist. Kainate receptors are
also tetrameric complexes of GluR5-7 and KA1-2 subunits. When
expressed in heterologous systems, homomeric KA1 and/or KA2
containing-receptors are virtually inactive, and, therefore, appear to
serve a modulatory function in contrast to the GluR5-7 subunits,
which generate functional ligand-gated receptors (Alt et al., 2004;
Herb et al., 1992; Howe, 1996).

The release of even small and brief (b1 ms) concentrations of gluta-
mate into the synaptic cleft generates robust excitatory postsynaptic
potentials (EPSPs). AMPA-mediated currents generate a fast upstroke
and rapid current decay while NMDA-receptor activation provides a
more prolonged phase of depolarization that can last several hundred
milliseconds. EPSP generation is hypothesized to be controlled by
AMPA receptor de/activation while the longer pharmacokinetics of
NMDA receptor sensitization provides ample opportunity for spatial
and temporal summation at numerous postsynaptic inputs. The higher
affinity of glutamate for NMDA-to-AMPA receptors likely explains these
pharmacokinetic differences, as prolonged receptor activation is often
the result of slower dissociation of agonist and receptor.

AMPA receptor trafficking has been widely studied, especially its
intracellular cycling and its potential physiological sequelae. Like all
membrane receptors, AMPA receptors are synthesized in the soma and
transported to the cell surface via the secretory pathway involving mul-
tiple membrane sorting steps and cytoskeleton transport proteins
(Kapitein et al., 2010; Kennedy and Ehlers, 2006). Dendritic AMPA
receptor localization to synapses is regulated via two mechanisms:
(1) exocytic and endocytic trafficking and recycling, respectively, in the
secretory pathway and (2) membrane diffusion from extrasynaptic-to-
synaptic localizations (Groc and Choquet, 2006; Hoogenraad et al.,
2010; Newpher and Ehlers, 2008; Wang et al., 2008).

A physiological role for AMPA receptor trafficking and surface diffu-
sion has been hypothesized in learning and memory. An LTP-like
strengthening of neocortical synapses occurs after sensory stimulation
in vivo (Holtmaat and Svoboda, 2009; Kessels and Malinow, 2009),
and this process appears dependent on AMPA receptor number, locali-
zation and facilitation at synapses (Takahashi et al., 2003). Learning in
the hippocampus also appears to be regulated by AMPA receptor
dynamics (Whitlock et al., 2006) as evidenced by the recruitment of
AMPA receptors to mushroom-shaped dendritic spines in the CA1
region of the hippocampus 24 h after fear conditioning (Matsuo et al.,
2008). Stress hormones have recently been recognized to play a role
in AMPA receptor trafficking (Groc et al., 2008; Krugers et al., 2010;
Yuen et al., 2011), and may provide a mechanism for the dose-
dependent (“inverted U”) facilitative and suppressive effects of
corticosteroid hormones on synaptic plasticity and cognition (Martin
et al., 2009). Further complexity in the regulation of ionotropic
glutamatergic neurotransmission is provided by molecular variability
at the transcriptional and post-transcriptional level. RNA editing of
AMPA and kainate receptor subunits (Higuchi et al., 1993) and
alternative splicing of mRNA transcripts (Sommer et al., 1990) modu-
late second messenger cascades critical for downstream intracellular
effects.

6. Metabotropic glutamate receptors

Unlike ionotropic glutamate receptors that depend on cation flux,
metabotropic glutamate receptors exert their effects via the recruitment
and activation of intracellular trimeric G-proteins and downstream
signal transduction pathways. Like all G-protein coupled receptors,
metabotropic glutamate receptors are seven transmembrane domain-
spanning receptors with an extracellular N-terminus and intracellular
C-terminus, and, like AMPA receptors, they possess an especially large
N-terminus. The metabotropic receptors (except mGluR8) localize
primarily to perisynaptic and extrasynaptic locales on neurons and glial
cells andmodulate synaptic activity andplasticity. To date, eightmetabo-
tropic glutamate receptors have been identified (mGluR1-8),which have
been further subdivided into three functional groups on the basis of
amino acid homology, agonist binding and activated downstream signal
transduction cascades (Kim et al., 2008). Group I metabotropic
glutamate receptors consist of mGluR1 and mGluR5. They elicit their
downstream effects by two mechanisms: (1) phospholipase C via
inositol-1,4,5-triphosphate (IP3) to release Ca2+ from intracellular stores
and (2) diacylgycerol (DAG) to stimulate protein kinase C. Group II
metabotropic glutamate receptors (mGluR2 and mGluR3) and group III
metabotropic glutamate receptors (mGluR4-8) are coupled to inhibitory
G-proteins (Gi) that decrease intracellular cyclic adenosine monopho-
sphate (cAMP) via inhibition of the adenylyl cyclase/protein kinase A
pathway. Members of each class share approximately 70% sequence
homology; across classes, there is approximately 45% sequence
homology (Conn and Pin, 1997). Similar to ionotropic glutamate
receptors, glutamate activates metabotropic glutamate receptors with
varying degrees of affinity/avidity, and fairly selective agonists,
antagonists and modulators have been identified and developed for the
various receptor classes and subtypes.

Postsynaptic activation of metabotropic glutamate receptors has
been demonstrated to modulate ion channel activity, and, as pre-
dicted, whether agonist binding to metabotropic glutamate receptors
potentiates or inhibits channel activity depends on whether their
cognate downstream signal transduction cascades. Tissue and cell
type-specificity also exists in this regard (Kuzmiski and Bains, 2010).



661M.J. Niciu et al. / Pharmacology, Biochemistry and Behavior 100 (2012) 656–664
Metabotropic glutamate receptors localized to presynaptic membranes
have been demonstrated to decrease both excitatory glutamatergic and
inhibitory GABAergic neurotransmission (Pinheiro and Mulle, 2008).
Although the precise mechanism(s) mediating presynaptic modulation
has not been conclusively demonstrated, metabotropic glutamate
receptors appear to elicit their diverse effects via the modulation of
voltage-dependent presynaptic Ca2+ channels, thereby influencing quan-
tal neurotransmitter release in a SNARE-dependent manner (Takahashi
et al., 1996). There is presently intense effort to develop both positive
and negative modulators of presynaptic group II and III metabotropic
glutamate receptors in an effort to treat a plethora of neuropsychiatric
illnesses (Nicoletti et al., 2011).

There is also great interest in developing strategies to modulate
group I metabotropic glutamate receptor activity. Beyond its en-
hancing effects on ionotropic glutamate receptor activation,
mGluR5 has been demonstrated to play a role in regulating local
mRNA translation in dendritic spines (Weiler and Greenough,
1993; Weiler et al., 1997). Local protein synthesis at synapses is re-
quired for the long-lasting physiological and pathophysiological se-
quelae of group I metabotropic glutamate receptor activation
including some receptors proposed in mediating metaplasticity.
(Abraham, 2008; Aschrafi et al., 2005; Banko et al., 2006; Huber et
al., 2000; Karachot et al., 2000; Merlin et al., 1998; Raymond et al.,
2000; Vanderklish and Edelman, 2002). After initially discovering
that group I metabotropic glutamate receptor signaling-dependent
LTD is impaired in the hippocampus of FMR1 (Fragile X Mental Re-
tardation gene 1) knock-out mice (Huber et al., 2002) and that the
gene product of FMR1, FMRP (Fragile X Mental Retardation
Protein), is a potent transcriptional repressor (Aschrafi et al., 2005;
Bolduc et al., 2008; Dolen et al., 2007; Huber et al., 2002; Laggerbauer
et al., 2001; Z. Li et al., 2001; Qin et al., 2005), Bear and colleagues
proposed that the loss of FMRP in Fragile X Syndrome (FXS) leads to ex-
cessive local protein translation owing to the dysregulated mGluR5
stimulated-protein synthesis, and that antagonism of mGluR5 may
abrogate the neuropsychiatric sequelae of this disorder. There are now
multiple studies confirming these hypotheses, especiallymGluR5's acti-
vation and downstream signal transduction hypersensitivity as
critical pathogenic factors in FXS (Dolen and Bear, 2008; Osterweil et
al., 2010). Other studies have demonstrated marked effects of mGluR5
modulators in a variety of animal models of neuropsychiatric and
neurodegenerative disorders making this one of the most active areas
in CNS drug discovery (Bird and Lawrence, 2009; Carroll, 2008; Cook,
2010; Gasparini et al., 2008; Krystal et al., 2010; Lindsley and Emmitte,
2009; Rodriguez and Williams, 2007; Simonyi et al., 2010).

7. Intracellular signal transduction from the postsynaptic density
to the nucleus

As mentioned, ionotropic and metabotropic glutamate receptors
interact with postsynaptic proteins through their intracellular C-
termini. Among the first discovered postsynaptic elements is the
critically important “scaffolding” protein, postsynaptic density protein
of 95 kDA (PSD-95). PSD-95 has been demonstrated to mechanically
stabilize the synapse via the presynaptic-to-postsynaptic interaction of
neuroligin and β-neurexin (Futai et al., 2007; Irie et al., 1997; Levinson
et al., 2005; Nam and Chen, 2005; Schapitz et al., 2010; Song et al.,
1999). PSD-95 also bridges glutamate receptors to the cytoskeleton. The
C-terminus of the glutamate receptor subunit NR2 binds to PSD-95, and
PSD-95 binds to α-actinin/F-actin, one of the major contributors to den-
dritic spine morphogenesis. PSD-95 also binds to postsynaptic signal
transduction effectors via the activation of calmodulin/calmodulin-
dependent kinase II (CaMKII). CAMKII mediates the phosphorylation
of various protein kinases and, as discussed above, the translocation
of AMPA receptors frommore intracellular compartments to the PSD.
A similar cycling process also occurs with KA receptors through PSD-
95 and other scaffolding proteins with PDZ domains, e.g. glutamate
receptor activating protein (GRIP) and SAP-97 (synapse-activating
protein of 97 kDa). Metabotropic glutamate receptors, on the other
hand, are found at more perisynaptic and extrasynaptic sites due to
their interactions with similarly-localized “scaffolding” proteins (e.g.
shank and homer). As such, presynaptic glutamate receptors are local-
ized via these intracellular scaffolds, e.g. mGluR7 binds to the PDZ do-
main of protein interacting with C kinase-1 (PICK-1) (Bertaso et al.,
2008; Boudin et al., 2000; Dev et al., 2000; El Far et al., 2000; Suh et
al., 2008) and impaired mGluR7a-PICK1 interaction leads to absence-
like seizures (Bertaso et al., 2008). Additionally, several recent studies
have identified altered expression of postsynaptic proteins in rodent
models and individuals suffering from a variety of neuropsychiatric
diseases (Karolewicz et al., 2009; Kristiansen et al., 2010; Sifonios
et al., 2009; Toro and Deakin, 2005), increasing their pathophysio-
logical intrigue.

Scaffolding proteins directly or indirectly regulate small monomeric
GTPases, and GTPases can either activate or silence transcription based
on their specific downstream effectors. GTPases cycle between active
GTP-bound and inactive-GDP bound forms, which are regulated by
activating GEFs (guanyl exchange factors) and inhibiting GAPs (GTPase
activating proteins). GEFs activate GTPases by promoting the exchange
of bound GDP-for-GTP while GAPs inhibit GTPases by hydrolyzing
bound GTP-to-GDP. As an example, a Ras-specific GEF associates with
NR2B (Krapivinsky et al., 2003), and a Ras-specific GAP, synGAP, binds
to PSD-95. If the Ras-specific GEF is activated via NR2B, GDP is
exchanged for GTP, and this stimulates intracellular signal transduction
cascades including the Raf-MEK-ERK and PI3K (phosphoinositide 3-OH
kinase) pathways. Phosphorylated ERK translocates from the cytosol to
the nucleus, where it activates the transcription factors CREB and Elk.
The PI3K pathway activates protein kinase B (Akt/PKB), which
stimulates nuclear translocation of the transcription factors, NF B and
CREB. The PI3K pathway also activates the MEKK–JNKK–JNK signal
transduction cascade; via nuclear translocation of JNK, the transcription
factors c-Jun, c-Fos and ATF2 are stimulated. Activation of these
immediate-early genes mediates the transcription and translation of
cytoskeletal proteins, enzymes of intermediary metabolism and neuro-
transmitter receptor subunits. In contrast, if Ras activity is inhibited via
synGAP, the above signal transduction cascades are inhibited and tran-
scription of the same target genes is reduced.

Cytoskeletal modulation is a critical mediator of glutamatergic
receptor signaling because, as mentioned above, increased synaptic
activity leads to morphological, biochemical and electrophysiologi-
cal effects on the order of minutes. The Rho-family small GTPases
Rac1 and Cdc42 promote dendritic spine morphogenesis via actin
polymerization while Rho itself facilitates spine retraction via actin
depolymerization (Krapivinsky et al., 2003). Numerous scaffolding
proteins bind to RhoGEFs, e.g. PSD-95, and other scaffolds contain
RhoGEF domains within their structure itself, e.g. kalirin (Alam et
al., 1997) and trio (Debant et al., 1996). When overexpressed,
GluR2 increases the size and density of dendritic spines while dele-
tion of this subunit leads to spine retraction (Passafaro et al., 2003).
Interestingly, acute ketamine exposure was recently shown to in-
duce rapid dendritic spine morphogenesis via the activation of
mammalian target of rapamycin (mTor), a serine/threonine protein
kinase that signals though PI3K. Spine morphogenesis and the rapid
antidepressant response of ketamine is speculated to occur via en-
hanced AMPA receptor activity, which is induced by the increased
release of presynaptic glutamate in the context of acute NMDA re-
ceptor blockade (Li et al., 2010).

8. Conclusions

Glutamate is themain excitatory neurotransmitter in themammalian
CNS. Mostly due to the serendipitous discovery of antidepressants and
antipsychotics that modulate monoaminergic neurotransmission and
the relatively recent discovery of glutamate's role as a true neurotrans-
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mitter, glutamatewas initially understudied in neuropsychiatric disease.
The discovery of ischemia-mediated glutamatergic excitotoxicity in
stroke sparked initial interest in the glutamatergic system's contribution
to the pathophysiology of neuropsychiatric illnesses. Since this time, the
number of studies implicating glutamatergic signaling in the diseased
brain has swelled, and recent research has focused on glutamatergic
neurotransmission as a rational therapeutic approach to disorders as
diverse as schizophrenia, major depressive disorder, cocaine use disor-
ders, FXS and amyotrophic lateral sclerosis (ALS). The authors of the fol-
lowing articles will review the preclinical and clinical evidence for
aberrant glutamatergic neurotransmission in neuropsychiatric disease
and outline important future directions in diagnosis, prognosis and
rational therapeutics.
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